

CUSP CARBON SOLUTIONS

Richard Middleton Carbon Solutions LLC

June 2nd, 2022

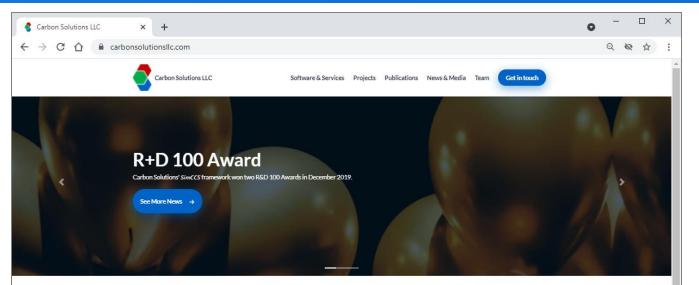
CARBON SOLUTIONS LLC CUSP State Status Updates

CARBON SOLUTIONS LLC Background

Overview

- Low-carbon energy startup focusing on energy infrastructure, the energy transition, and society.
- 21 employees, ~25 consultants.
- ~30 projects in first year: DOE | Industry | NGOs.

Energy applications


• CCS, energy storage, geothermal, wind, DAC, hydrogen, grid modeling, energy equity...

Data analytics

• Optimization, reservoir simulation, LCA, TEA, machine learning, GIScience...

Approach: Three Pillars

- 1. **R&D:** Applied R&D to support science-based decision making.
- 2. SOFTWARE: Science-based software solutions backed by publications.
- **3. SERVICES:** Client support with unique science, data, & software.

Carbon Solutions LLC

Carbon Solutions works with industry, government, non-profits, researchers, and other stakeholders to identify and implement real-world solutions for low-carbon energy challenges.

- Global Recognition for Scientific Advances We have a proud 15-year record of world class carbon research that we leverage to provide urgently-needed carbon solutions.
- Award-winning Software We are the world's leading company for award-winning software that supports integrated CO₂ capture, transport, and storage solutions.
- 🛶 Data Analytics

We develop and apply cutting-edge data analytics including infrastructure optimization, machine learning, artificial intelligence, and GIScience.

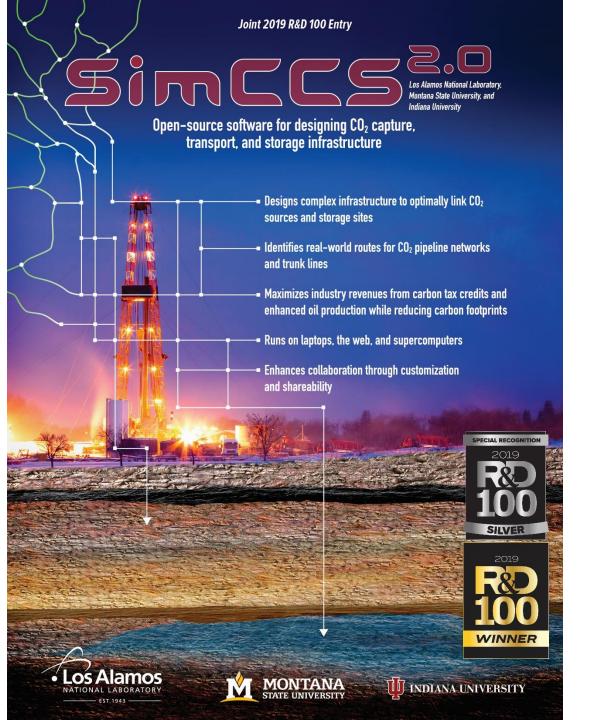
 Low-carbon Energy Applications
We work on CO: capture and storage (CCS), energy storage, geothermal-windsolar-bioenergy, and the hydrogen economy.

CARBON SOLUTIONS LLC Background

Foundation

• Award-winning CCS science & software.

SimCCS^{PRO}


- Decision-support framework for designing CO₂ capture, transportation, & storage (CCS) infrastructure.
- Industry-& research-leading CCS infrastructure tool.
- Dozens of scientific papers, thousands of citations.
- Two R&D 100 Awards (2019).

Decision discovery & support

- Integrated capture, transport, & storage economics.
- End-to-end techno-economic assessment (TEA).
- Policy analysis.
- System-wide life cycle assessment (LCA).

CARBON SOLUTIONS LLC

 Leveraging decades of carbon *research* to help industry, stake-holders, and the Nation develop carbon *solutions*.

7/25/2022 | 4

Project support

- WORKING GROUPS: Lead/key roles in Data, Analytics, Economics, & Outreach.
- CROSS-CUTTING SUPPORT WITH SIMCCSPRO:
 - CCS analysis: SimCCSPRO.
 - CO₂ capture: *NICO₂LE^{PRO}*.
 - CO₂ transport : **CostMAP**^{PRO}.
 - CO₂ storage : **SCO₂T^{PRO}**.
- **TEAM SIMCCS:** Internal CARBON SOLUTIONS team, support SimCCS studies across the CUSP.
- **EXPERTISE:** Integrated CCS assessment, LCA, TEA, hydrogeology, geology.
- Focused projects: Supporting six focused projects with *SimCCS*, reservoir simulation, LCA, TEA, machine learning, GIScience...

California | Stanford University

• Integrated SimCCS, LCA, environmental justice.

Kansas | Kansas Geological Survey

• Reservoir simulation, infrastructure assessment.

Montana | Montana State University

• Machine learning, *SimCCS* model development.

Nevada | Desert Research Institute

• Geothermal plant LCA/TEA, geothermal/CO₂ storage.

Oklahoma | University of Oklahoma

• Reservoir simulation, SimCCS, OK CCS road map.

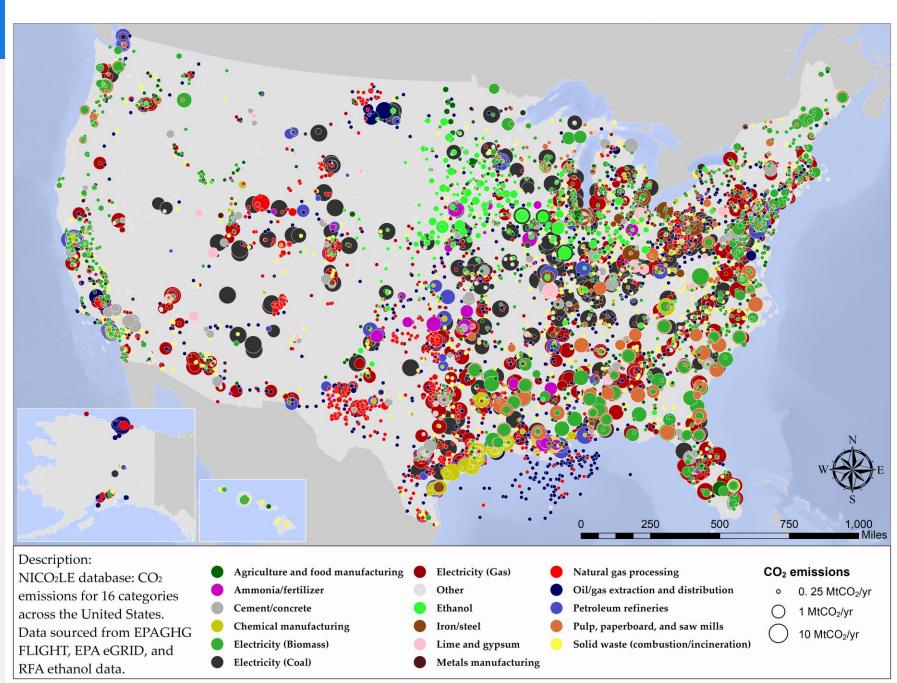
Utah | University of Utah

• LCA, SimCCS.

Richard Middleton Role: Leadership, SimCCS	Elizabeth Abramson Role: Visualization, Communication	Jeff Bennett Role: LCA	Kyle Cox Role: SCO ₂ T database	Kevin Ellett Role: Leadership, Geoscience	Mike Ford Role: Leadership, Economics	Peter Johnson Role: Reservoir Simulation
Dane McFarlane Role: Policy Analysis	Erin Middleton Role: Environmental Justice	Marco Miranda Role: SimCCS	Jonathan Ogland- Hand Role: TEA	Kelsey Seals Role: Reservoir Simulation	Carl Talsma Role: SimCCS	Monty Vesselinov Role: Machine Learning

SINCCSPRO NICO₂LEPRO

Why?


• Commercial-scale CO₂ capture opportunities.

How?

- **Fuse:** emissions data from EPA GHGRP/FLIGHT, EPA eGRID, RFA (ethanol)...
- **Fuse:** capture cost & stream data from 15+ lit. sources.
- **EXPERTISE:** industry-leading experience with CO₂ capture.

What?

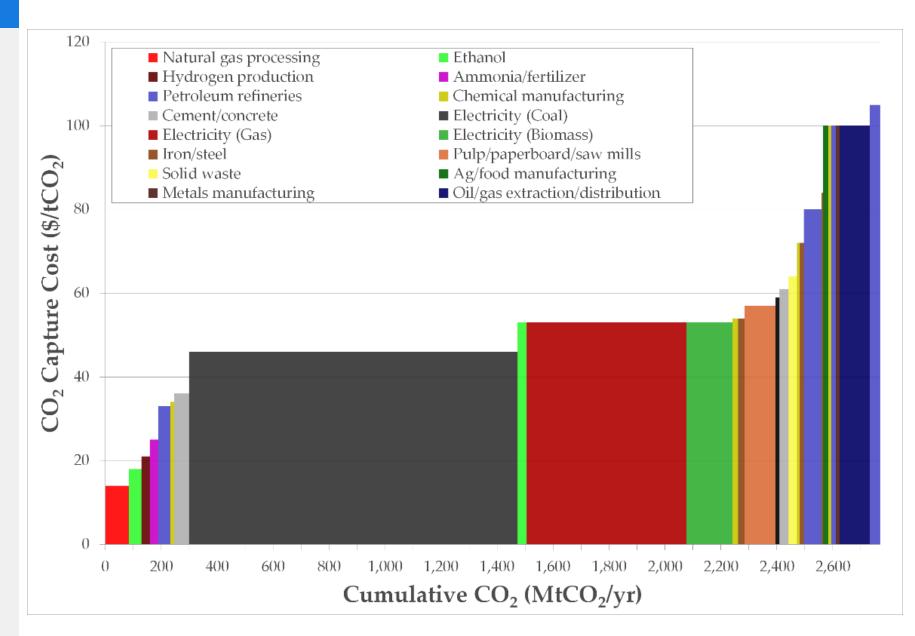
- **GEODATABASE:** source locations, CO₂ streams (quantity & purity), & capture costs.
- **SUPPLY CURVES:** Identify economic opportunities.
- Market Assessment.

7/25/2022 |

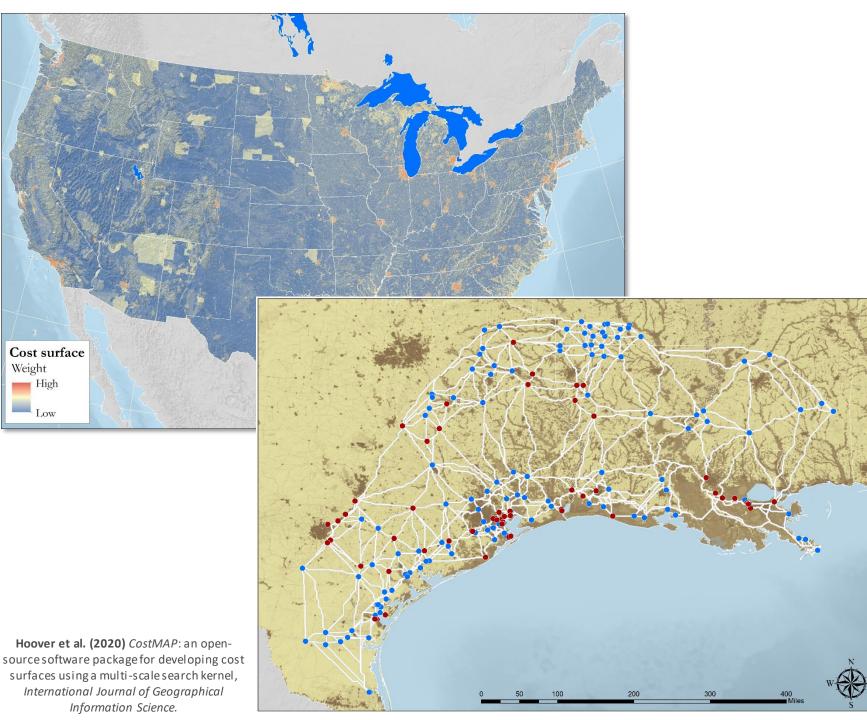
Middleton et al. (2017) Industrial CO₂ and carbon capture: near-term benefit, long-term necessity, Energy Procedia.

SIMCCSPRO NICO₂LEPRO

Why?


• Commercial-scale CO₂ capture opportunities.

How?


- **Fuse:** emissions data from EPA GHGRP/FLIGHT, EPA eGRID, RFA (ethanol)...
- **Fuse:** capture cost & stream data from 15+ lit. sources.
- **EXPERTISE:** industry-leading experience with CO₂ capture.

What?

- **GEODATABASE:** source locations, CO₂ streams (quantity & purity), & capture costs.
- **SUPPLY CURVES:** Identify economic opportunities.
- Market Assessment.

8

SIMCCSPRO CostMAPPRO

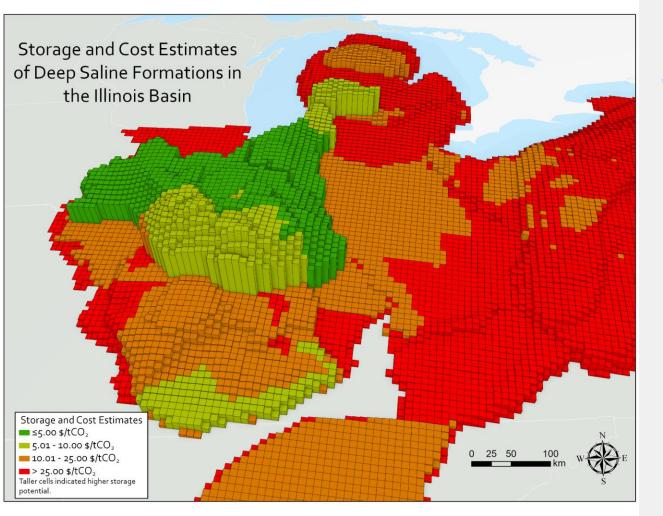
Why?

• Understand where, how, & cost of CO₂ transportation.

How?

- Nonlinear integration of ROWs (e.g., pipelines), barriers (e.g., rivers), population, topography, land use, ownership, environmental justice...
- SimCCS cost model.

What?


- Next-generation software for pipeline costs & routing.
- Cost & routing surfaces, grid cells 10 m to ~1,000 m.
- Multiple pipeline routes, avoid sensitive areas.
- Pipeline route robustness.

sco₂^{TPRO} Background

* Disclaimer: This was never actually said in any Star Trek film

or episode or CARBON SOLUTIONS publication to date.

Pronunciation

- "Great SCO₂T" | Doc Brown (1885/1955/1985).
- "Beam me up SCO₂T" * | James T. Kirk (2265–2269).

Timeline

2012 | Pre-SCO₂T for SimCCS.

2014 | Version 1.00 released (*link*)

2018 | SCO_2T public domain release with SimCCS.

2019 | Open-source SCO_2T as part of R&D 100 Award.

2020 | Publication-release of ROMs with publication.

2021 | CARBON SOLUTIONS LLC formed.

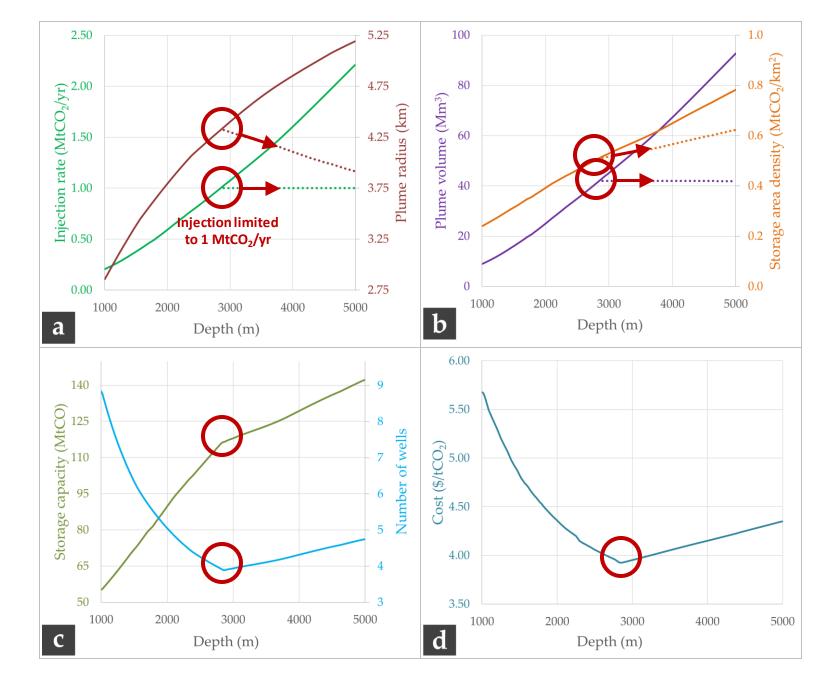
2021–2024 | SCO_2T^{PRO} , DOE Office of Science.

Publications

- SCO₂T Part I (2020): <u>link</u>.
- SCO₂T Part II (2021): <u>link</u>.
- SCO₂T Part III (2021): <u>link</u>.
- SCO₂T Part IV (2022): <u>link</u>.
- Application: Electricity Planning (2022): <u>link</u>.
- Application: Plume Geothermal (2022): <u>link</u>.

sco₂T^{PRO} Sequestration Science

Approach


 Sensitivity analysis for reservoir depth, thickness, permeability, porosity, & temperature.

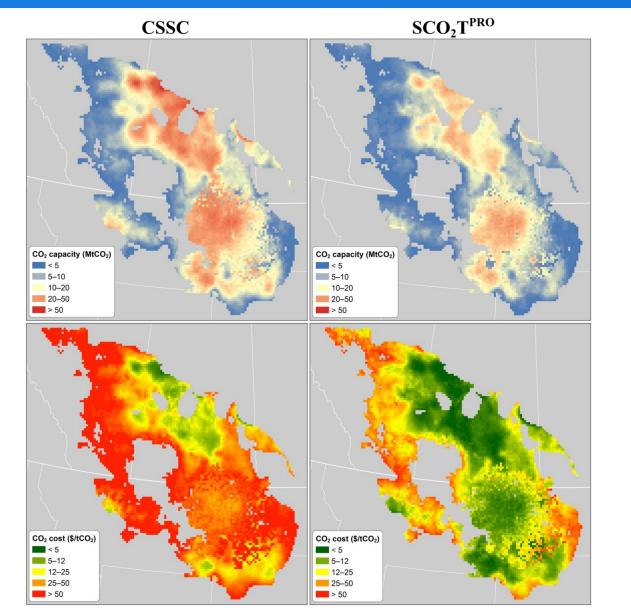
Example: depth

- Injection rate and plume radius increase.
- Plume volume and storage area density increase.
- Traditional understanding: costs go down.

Well limitations

- Limit injection to 1 MtCO₂/yr.
- Plume radius decreases.
- Changes in storage rate.
- Costs rise once well capacity is reached.

CARBON SOLUTIONS LLC


7/25/2022 |

11

Middleton et al. (2020) Identifying geologic characteristics and operational decisions to meet global carbon sequestration goals, Energy & Environmental Science.

SCO2TPRO Comparison with State of the Art

Peer-reviewed paper

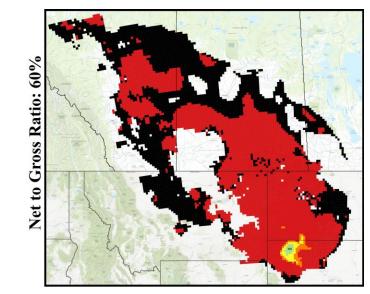
- Screening for Geologic Sequestration of CO₂: A Comparison Between SCO₂T^{PRO} and the FE/NETL CO₂ Saline Storage Cost model (CSSC).
- Compared SCO₂T with the "leading" competitor.

Primary takeaways:

- Cost and capacity estimates from FE/NETL tool (CSSC) were at least twice as large as those of SCO₂T^{PRO}.
- SCO_2T^{PRO} can execute screening thousands of times faster than CSSC.

$SCO_2 T^{PRO}$ CO₂-Geothermal


In-review paper


- A Geospatial Cost Comparison of CO₂ Plume Geothermal (CPG) and Geologic CO₂ Storage.
- Journal: Frontiers in Energy Research Carbon Capture, Utilization and Storage.

Primary Takeaways

- Lowest cost locations are different than locations with lowest cost CPG.
- Drilling new wells specific for CPG can lower the breakeven price of electricity required instead of using only CCS injection wells.
- Sequestered CO₂ could be used to triple the US geothermal capacity via single South Dakota CPG "sweet spot" (7 GWe, current US capacity ~3.8 GWe).

CO₂ Plume Geothermal (CPG) Using Geologically Stored CO₂ to Generate Electricity

LCOE _{CCS} LCOE _{Ormat} LCOE _{Lazard} Brownfield [2017\$/MWh]						
Low Power Generation ($< 1 \text{ kW}_{e}$)						
< 77	< 84	< 120				
77-80	84-87	120-125				
80-100	87-109	125-156				
100-150	109-164	156-234				
>150	> 164	>234				

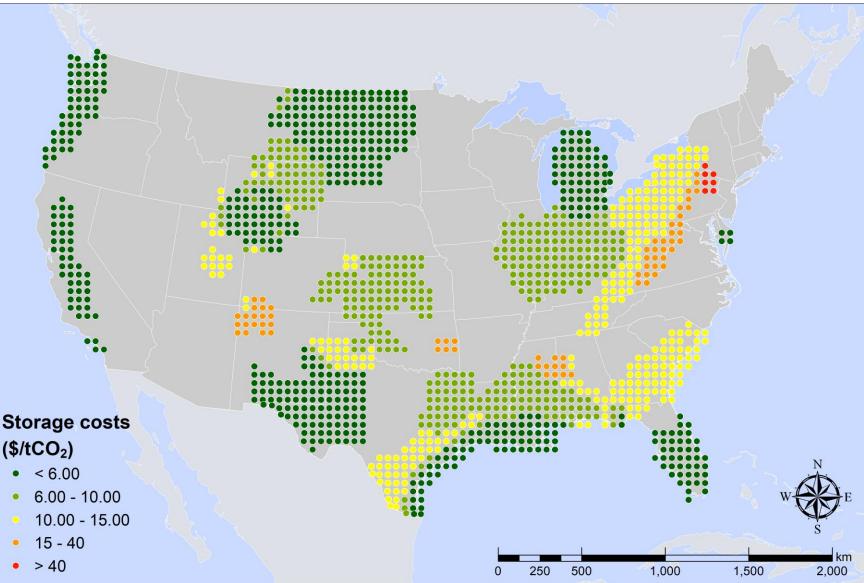
Ogland-Hand et al. (2022) A Geospatial Cost Comparison of CO₂ Plume Geothermal (CPG) Power and Geologic CO₂ Storage, *Frontiers in Energy Research* (in review).

sco₂T^{PRO} Nationwide Database

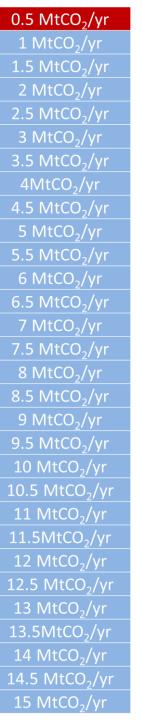
Industry

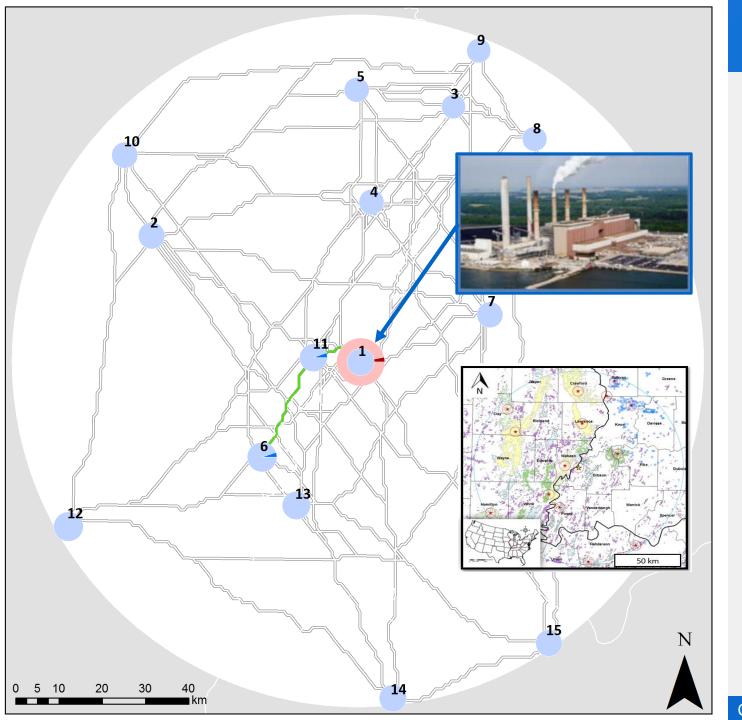
• Class VI site selection & precharacterization.

National map

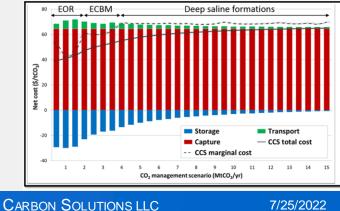

- Integrate best-available geology & deploy SCO₂T^{PRO}.
- First-generation nationwide capacity & map (~March '22).

Projects


• Nationwide CO₂-storage supply curves for energy.

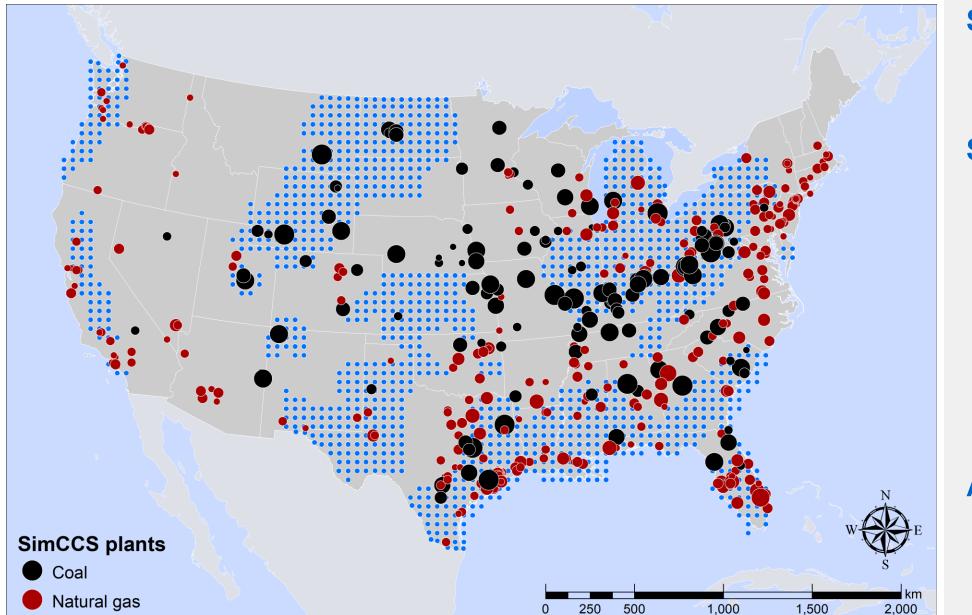

DOE Office of Science

- Complete rebuild of SCO₂T using STOMP.
- Advanced sequestration capabilities for individual sites & regions.


LOCAL CASE STUDY **Duke Energy**

Analysis

Help Duke Energy understand options for capturing part to all of Gibson Station's CO₂.


Decisions

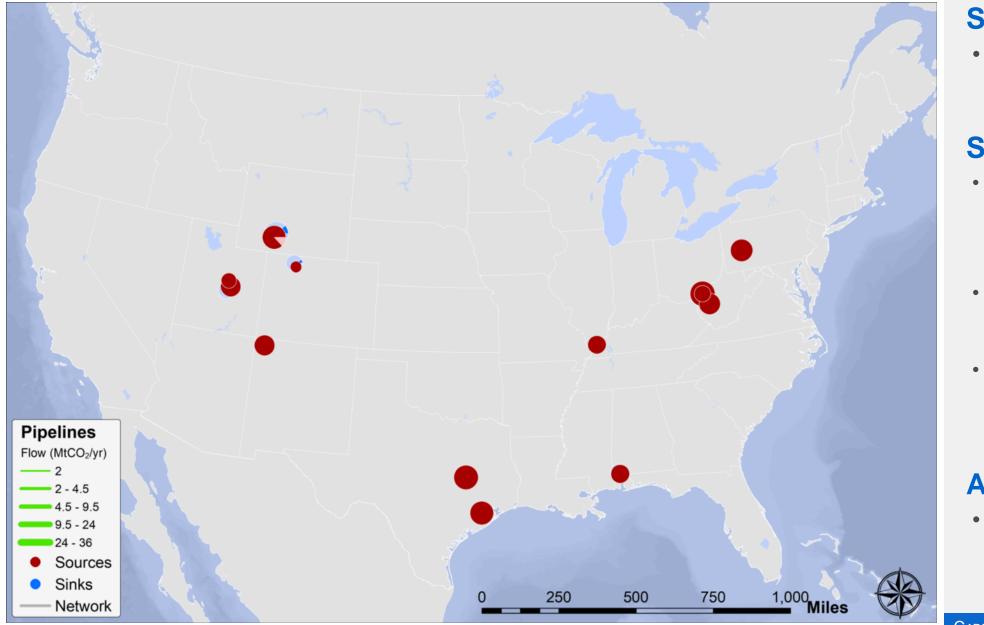
- **Costs:** Infrastructure deployment & costs over.
- **REVENUE:** Oil (CO_2 -EOR), methane (ECBM, depleted gas fields).
- CCS BUSINESS PLAN: Assess multiple business scenarios, carbon targets, uncertainty, de-risk investments.

NATIONAL CASE STUDY Decarbonization of Fossil Electricity

Scenario

• Help guide policymaker plans for emissions rules for coal and gas plants.

Scenario


- Sources:
 - 429 plants | 1,044 MtCO₂/yr.
 - 137 coal | 603 MtCO₂/yr.
 - 293 NGCC | 444 MtCO₂/yr.
- Storage:
 - Saline-only, Medium-cost estimates from SCO_2T^{PRO} .
- Scenario:
 - SimCCS^{CAP} mode.
 - Increasing CO₂ capture (100– 1,1044 MtCO₂/yr).

Analysis

 Distributed storage vs. major hubs?

NATIONAL CASE STUDY Decarbonization of Fossil Electricity

Scenario

• Help guide policymaker plans for emissions rules for coal and gas plants.

Scenario

- Sources:
 - 429 plants | 1,044 MtCO₂/yr.
 - 137 coal | 603 MtCO₂/yr.
 - 293 NGCC | 444 MtCO₂/yr.
- Storage:
 - Saline-only, Medium-cost estimates from SCO_2T^{PRO} .
- Scenario:
 - SimCCS^{CAP} mode.
 - Increasing CO₂ capture (100– 1,1044 MtCO₂/yr).

Analysis

 Distributed storage vs. major hubs?