A CUSP Focused Project Midcon CCS Hub

Franek Hasiuk, PI + Project Partners

CCUS	Energy Storage	Hydrogen Economy	Critical Minerals
 Gets CO₂ out of the atmosphere Prolongs investments in current infrastructure 	 Manages variable production of power from renewables <i>and</i> fossil generators Network benefits 	 Can be burned with natural gas Transport fuel Industrial uses 	 Required for high tech manufacturing (e.g., solar panels, wind turbines, electronics, screens) Complex to refine
 Oil/gas is extracted from reservoirs and used CCS technology captures harmful C2 emissions before they enter the atmosphere The CO2 is pumped over 1 The CO2 is pumped over 1 The CO2 is pumped over 1 Corrects Corrects Corrects Corrects 	Fresh Water Blanket (N ₂ or Compressed Air) Blanket (N ₂ or Compressed Air) Blanket (N ₂ or Compressed Air)	Renewvable energies Solar PV Solar PV Hydroelectric Vind Biomass Natural gas Coal Huel cell Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric Flectrolly Hydroelectric	

ONEOK has several gas processing plants that emit ~1M tonnes of CO₂ per year and plan to install hydrogen generation facilities that generate another 300k tons per year

- Identify CO₂ reservoirs for long-term saline storage or EOR around ONEOK natural gas liquids fractionation plants near Bushton, KS, and Medford, OK, as well as several gas processing plants in Oklahoma
 - Develop economic feasibility and business models for the CCUS projects for suitable storage candidates
 - Prepare necessary information and guidance for permitting, monitoring, and verification programs will be prepared for suitable candidates
- Explore feasibility of CO₂ use in unconventional reservoirs in Kansas, Oklahoma, or beyond

Summary of Our Focused Project

- Review co-utilization of additional gaseous products along with novel CO₂^{*}
 capture concepts
 - Consider on-site hydrogen generation with CO₂ capture
 - Explore temporary storage of H₂, CO₂, or other gaseous products in salt caverns
- Quantify the feasibility of augmenting ONEOK CO_2 capture systems to ensure sufficient CO_2 volume output to qualify for 45Q tax credits or other incentives
 - Investigate centralized CO₂ capture/processing facility for process units that leverage existing pipeline network

If successful, this study will support a "Hub" concept for ONEOK that will allow for co-utilization of various hydrocarbon and non-hydrocarbon gasses and products

Our Focused Project

- CUSP Team: KGS/KU, OU/OGS, NMT, Sandia, PNNL, LANL, Carbon Solutions, ONEOK
- Primary goal(s)
 - Identify saline storage, EOR, and unconventional resources for CCUS
 - Identify salt resources for gas storage
- Industry Partner: ONEOK (Midstream Operator)
- Project duration (CUSP and beyond)
 - Phase 1: 5/2021–2/2024
 - Phase 2: 2024-2026
 - Phase 3: 2027-2028
- Anticipated time to storage: 2 years
- Anticipated volume/year: ?

Task	Task Name	Task Assignments	22			23				24
			Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1	Technical Review	KGS, CS, Sandia, ONEOK								
2	Digital Database Build	KGS, CS, ONEOK								
3	Reservoir Studies	KGS, CS, LANL								
4	Dynamic Simulations	KGS, PNNL, LANL								
5	Infrastructure Network Assessment	CS, Sandia								
6	UIC Class VI Preparations	KGS, ONEOK								
7	UIC Class VI Support	KGS, ONEOK, PNNL, LANL								
8	45Q Preparations	NMT, KGS , ONEOK								
9	MVA Program	KU Geology, KGS , LANL								
10	Risk Assessment	PNNL, LANL, KGS , Sandia								
11	Project Management	KGS, ONEOK								

5

ONEOK is a Midstream Operator

- 37,000 miles of NGL and natural gas pipelines
- 55 bcf of natural gas storage capacity

• 840,000 bpd of NGL fractionation capacity

Geologic cross-section shows reservoirs

Salt is Key to Storage

Geography of Salt in Kansas & Oklahoma

Why Here? Location, Location, Location

Business Location

• Significant investments in infrastructure and people

Geological Location

- Significant salt presence
- Deep enough reservoirs

Geographic Location

- Middle of Lower 48
- Lower climate risk

No strangers to hard work!

Oklahoma

Midcon CCS Hub

What questions do you have?

Geological & Engineering Tasks

STATISTICS OF KUNSAS

- Task 1 Technical Review (KGS, OU/OGS, Carbon Solutions, Sandia, ONEOK)
 - Determine quantity, type, and quality of the legacy data relevant to geologic, infrastructure, and risk
 assessment, as well as economic modeling activities...including available well, well test, core, pressure,
 and temperature data
- Task 2 Digital Database Build (KGS, OGS, Carbon Solutions, ONEOK)
 - Create databases region for the use by geologic modeling (e.g., Petrel), pipeline routing (SimCCS), NRAP Tools (risk assessment), and others
- Task 3 Reservoir Studies (KGS, OGS, Carbon Solutions, LANL)
 - Generating draft maps to define saline storage and EOR prospects. Subject to data availability, this work
 will include structure, isopach, and porosity maps for seal and reservoir horizons of interest to
 qualitatively assess potential for CO₂ injection.
 - Evaluate existing injection pressures and rates to determine suitability for saline storage or EOR
 - Perform geomechanical analysis, seal assessment, structural model creation/analysis, and stress regime assessment to identify potential risks associated with geomechanical hazards
 - Assess well integrity and seal penetrations to support seal assessment
 - Assess the thickness distribution of salt beds in Kansas and Oklahoma
- Task 4 Dynamic Simulation (WYO, PNNL, LANL)
 - Evaluate current operations within existing fields to determine active wells, potential business entry
 opportunities and potential CO₂ project risks related to subsurface geology, ongoing operations, or
 surface activities.

- Task 5 Class VI Preparations (KGS, OGS, ONEOK)
 - Meet with EPA to prepare for Class VI permit application; consultant on necessary data and analysis submissions before the application
 - Meet with external teams that have experience in applying for a Class VI permit
- Task 7 UIC Class VI Support (KGS, OGS, ONEOK, PNNL, LANL)
 - Facilitate the flow of information between an applicant and US EPA Team
 - Answer Requests for Additional Information tables or documents and prepare additional reports
- Task 8 45Q Preparations (NMT, KGS, ONEOK)
 - Facilitate necessary US IRS 45Q compliance documentation

Operations Tasks

- Task 8 Infrastructure Network Assessment (Carbon Solutions, Sandia)
 - Assess operational limitations to developing a CO₂ injection project.
 - Model pipeline corridor and survey site access and surface facilities
 - Define equipment, surface facilities, and subsurface vessels that would be required to execute the chosen design
- Task Task 9 Monitoring, Verification, and Accounting Program (KU Geology, KGS, LANL)
 - Install and monitor seismometer network
 - survey surface and shallow well geochemistry
 - Assess pore-pressure and other secondary means of AoR monitoring
- Task 10 Risk Assessment (PNNL, LANL, KGS, Sandia)
 - Prepare a ranked matrix of key risk factors for each seal and reservoir addressing key (sub)surface issues that could affect injection viability
 - Perform induced seismicity and potential leakage risk analysis using NRAP tools, and develop strategies for risk mitigation