

CUSP Analytics Working Group

Sean Yaw Montana State University

NRAP – Leakage Risk

Importing data into NRAP-Open-IAM and collecting legacy wells information at Buzzards Bench site in Utah.

Collecting data for a quantitative risk assessment of a potential site in California.

Completed comprehensive risk calculations and analyzed impacts on overlay aquifer for a selected storage formation in Colorado. Completed Simple Reservoir risk analysis for Oklahoma case study and continuing work using heterogeneous reservoir site simulation.

Lead Organization: LANL

NRAP – Seismic Risk

Concept

- Use NRAP State of Stress Assessment Tool (SOSAT) to compute probability of fault activation at native pore pressure and elevated pressure with fluid injection
- Convert difference in probabilities of fault activation into seismic readiness index

Scope

- Create areal discretization of region
- Compute lithostatic, native pore, and elevated pore pressure at each cell
- Use SOSAT to determine probability of fault activation

Lead Organization: PNNL

• Existing pipelines

 Identify potential hubs and opportunities for localized regions.

- Identify potential hubs and opportunities for localized regions.
- 3. Explore cross-region integration.

- Identify potential hubs and opportunities for localized regions.
- 3. Explore cross-region integration.

Data Concerns:

- Artificially optimistic/ pessimistic parameters
- Biased locations
- Density

Infrastructure Scenario Analysis Approach: 1. Conduct case studies of localized regions (KS, OK,

Data Concerns:

- Artificially optimistic/ pessimistic parameters
- Biased locations
- Density

Data Standardization:

- SCO₂T
- NICO₂LE

Portfolio Approach:

Best available + standardized

Infrastructure Scenario sis Approach: duct case studies of lized regions (KS, OK, CA, Four Corner bn currently). tify potential hubs and opportunities for localized regions. 3. Explore cross-region ration. luct CUSP-wide **þ**yment lsments.

Example Case Study: Kansas

Scenario: Process all capturable emissions.

Scenario: Spatially targeted storage.

Scenario: Process all profitable emissions.

Scenario: Phased infrastructure deployment.

SimCCS Output

1. GUI image.

3. Shapefiles.

					1		
Project Length	20						
CRF	0.10954648						
Annual Capture							
Amount (MTCO2/yr)	16.78						
Total Cost (\$M/yr)	-218.05711						
Capture Cost (\$M/yr)	623.77						
Transport Cost (\$M/yr)	75.5185877						
Storage Cost (\$M/yr)	-917.3457						
Course	Captura Apa	Cantura Cast	(_			
Source		Capture Cost	(Şivi/yi)	_			
Jeffrey Energy Center	11	495					
Coffeyville Fertilizer	1.26	20.16		_			
Holcomb Center	1.57	54.95					
Sink	Storage Amo	nc Storage Cost (\$M/yr)					
Вох	1.96	-101.9592					
Pleasant Prairie	1.87	-106.777					
Wellington	4	-226.8					
Edge Source	Edge Sink	Amount (MT	Trend		Transport Co	Length (k	m)
5170361	5174624	11		1	0.21981	1.17179	968
5852020	5860546	0.3		0	0.120576	2.360220	029
6223497	6240553	4.74		0	0.4037084	3.706497	756

2. CSV file.

Analytics Working Group - Deliverables

Task / Subtask Number	Deliverable Title	Due Date	
1.0	Project Management Plan.	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the NETL Project Manager.	
2.1	Catalog of significant stacked/unconventional storage options from each state.	6/30/2021	
3.1	CCUS assessment database for CUSP region.	9/30/2021	
3.2	Report: NRAP testing and validation on candidate sites	9/30/2022	
4.4	Report: Nontechnical Impact Assessment on CCUS potential in CUSP region.	12/31/2023	
4.5	Report: Focused scenario analysis results on candidate sites in CUSP region	6/30/2024	
5.0	Report: Documentation of process diagrams/workflows/templates/etc for development of CCS/CCUS projects (with guided steps that illustrate SimCCS analyses and results, accessible via CUSP Dashboard)	3/31/2023	
5.1	Regional readiness indices maps	6/30/2024	

Leakage Risk Assessment Using NRAP Tool – Accomplished to date

- Carried out comprehensive leakage risk calculations and analyzed their impact to overlay aquifer for a selected storage formation in Colorado.
- Completed Simple Reservoir risk analysis for Oklahoma case study; working with Oklahoma team on risk assessment using heterogeneous reservoir site simulation to cover both injection and PISC period.
- Working with Utah team on importing Eclipse reservoir pressure and CO₂ saturation results into NRAP-Open-IAM, and collecting legacy wells information for leakage risk assessment at Buzzards Bench site.
- Working with California team on data collection for setting up quantitative risk assessment of a potential storage site at California.

NRAP's Approach for Rapid Prediction of Whole-system Risk Performance

Develop detailed component models that are validated against

lab/field data

C. Develop reduced-order models (ROMs) that rapidly reproduce component model predictions

- D. Link ROMs via integrated assessment models (IAMs) to predict system performance
 - E. Exercise whole system model to explore risk performance

Leakage Risk Assessment – CO Case Study in CUSP

• Time frame considered:

30 year injection + 100 year post-injection

• CMG simulations:

reservoir pressure and CO₂ saturation

- Lookup Table Reservoir
- Multi-segmented Wellbore ROM
- Carbonate aquifer ROM
- Injection rate: 1MT/year
- Distance of existing well (Prod_v1) to injector:348 m
- Probabilistic simulations to account for parameter variability and uncertainty

- Storage reservoir: Pierre sandstone
- Receptors of concern: Arapahoe (USDW) and atmosphere
- **Potential leakage pathways**: 4 vertical and 11 horizontal production wells

Leakage Results – CO Case Study in CUSP (worst case existing well: prod_v1)

- There are small CO₂ (< 4e-4 kg/s) and brine (<7e-7 kg/s) leakage to USDW, the leakage breakthrough starting after injection stopped, and the mean leak rates flattened towards the end of 130 year simulation duration.
- USDW impact above and beyond natural background variability (pH not less than 6.7 and TDS not greater than 450 mg/L) : There is no impact to pH; impacted TDS plume radius is less than ~200m for a few worst scenarios.
- Comparing to total amount CO₂ injected (1MT/yr over 30 years), the amount of CO₂ leaked to USDW through 100 years PISC period is peaked at ~year 90 and less than 2.86e-05 % (worse case), with mean less than 1.52e-6 %.

Impact of tribal lands and disadvantaged communities restrictions on pipeline routes

Capture target: 96 Mt

	Without Tribal lands & DCs restriction	With Tribal lands & DCs restriction
Pipeline length (km)	2198	2433 (10.7% longer)
Transport cost (\$/tCO ₂)	1.8	2.6
Storage cost (\$/tCO ₂)	5	5
Capture Cost (\$/tCO ₂)	57.8	57.8
Tax credits (\$/tCO ₂)	50	50
Total cost (\$/tCO ₂)	14.6	15.4

• Overall pipeline length and average transport cost is increased in order to avoid tribal lands and disadvantaged communities

Readiness indices:

- Map layers of different risks/readiness (e.g., induced seismicity risk, storage potential, capture potential, social concerns, endangered species habitat) with selectable values.
- Infrastructure modeling runs displayed based on selected values.
- Heat maps of deployments across many risk/readiness values.

Data requirements:

- SCO₂T/NICO₂LE.
- Data quality/resolution appropriate for regional assessment.
- Comparable data. Generated consistently across regions.

Seismic Risk Based Readiness Index for SimCCS **Regional Modeling of Seismic Risk with SOSAT**

Concept

- Use the NRAP State of Stress Assessment Tool (SOSAT) to compute the probability of fault activation at the native pore pressure and elevated pressure with fluid injection
- Convert the difference in probabilities of fault activation into a seismic readiness index

Scope

- Create areal discretization of region
- Compute lithostatic, native pore, and _50000 elevated pore pressure at each cell
- Use SOSAT to determine probability ٠ of fault activation 37.0

Example

500000

-500000

500000

36.5

36.0

Arbuckle formation in Oklahoma

37.0

· 12