Functionality and application opportunities for the NRAP Passive Seismic Monitoring Tool

Lianjie Huang, Los Alamos National Laboratory Yu Chen, Ting Chen, Kai Gao, George El-kaseeh (LA-UR-23-26509)

NRAP tool for microseismic monitoring design

 An NRAP tool for optimal design of microseismic monitoring network is available at NETL EDX for geologic carbon storage and other microseismic monitoring applications: <u>https://edx.netl.doe.gov/user/register</u>

Comments and Questions:

NRAP@NETL.doe.gov

NRAP Website: https://edx.netl.doe.gov/nrap/

Sign up for NETL EDX: <u>https://edx.netl.doe.gov/user/register</u>

Objectives

- Develop a tool for optimal design of microseismic monitoring network using surface and/or borehole geophones for cost-effective microseismic monitoring at geologic carbon storage sites and for other microseismic monitoring applications.
- Demonstrate an example application of the tool to the Farnsworth CO₂-EOR field, Texas, the field demonstration site of the Phase III of the Southwest Regional Partnership on Carbon Sequestration.

Contents

- The NRAP tool: Optimal Design of Microseismic Monitoring Network
- Example application to the Farnsworth CO₂-EOR field, Texas

Microseismic Monitoring Network Design

- Design an optimal monitoring network to reliably locate induced microseismic events cost effectively.
- Based on the relationship between the hypocenter uncertainty of microseismic events (red stars) within the target monitoring regions (red dashed box) and the geophone distribution (blue triangles).
- Applicable to any geologic carbon storage sites and other microseismic monitoring applications.
- Can use surface seismic stations and/or borehole geophone arrays.

- The GUI of the NRAP tool is designed by MATRIC | Mid-Atlantic Technology, Research & Innovation Center, with executable files from LANL
- Tool can be run on Linux, Windows, and Mac Oss
- GUI is based on java
- java -jar ./NRAP_PSMT.jar
- Acknowledgments
- References
- User Manual

- Enter parameters
 - Define geophone distribution area, such as the surface area or borehole(s)
 - Define target monitoring region(s)
- Save parameters (Save Sim)
- Run simulation (Run Sim)

lessive Seismic Monitoring Tool				_	×		
File Return To Main Page							
Plot Result.out	Geophone Dist Area Monito	toring Region					
Save Sim							
Run Sim	neter for a target monitoring re	region			300 *		
Abort Sim	eter for a target monitoring region			700 *			
South bound in i	uth bound in meter for a target monitoring region			300 -			
North bound in meter for a target monitoring region			700				
Top depth bound in meter for a target monitoring region		300 -					
Bottom depth bound in meter for a target monitoring region			700				

- Enter parameters
 - Define geophone distribution area, such as the surface area or borehole(s)
 - Define target monitoring region(s)
- Save parameters (Save Sim)
- Run simulation (Run Sim)
- Progress bar shows the job progress

 Plot result (Result is automatically plotted after the job is completed.)

📓 Passive Seismic Monitoring Tool		_	×	
File Return To Main Page				
Plot Result.out	Geophone Dist Area Monitoring Region			
Save Sim				
Run Sim	neter for a target monitoring region	300		
Abort Sim	eter for a target monitoring region	700 -		
South bound in meter for a target monitoring region		300		
North bound in meter for a target monitoring region		700		
Top depth bound in meter for a target monitoring region		300 -		
Bottom depth bound in meter for a target monitoring region		700		

- Result of the three-layer model
 - Eight surface seismic stations are needed for cost-effective microseismic monitoring

Contents

- The NRAP tool: Optimal Design of Microseismic Monitoring Network
- Example application to the Farnsworth CO₂-EOR field, Texas

Farnsworth CO₂-EOR Field: SWP Phase III

(From: https://www.netl.doe.gov/coal/carbon-storage/atlas/swp/phase-III/farnsworth)

Target monitoring regions

Target monitoring regions

- Reservoir: Cylinder region around the injection well: Radius of 1.6 km from the monitoring well; Depth range between 1.2 km and 3.0 km.
- Faults: 5 km long; Depth range between 1.2 km and 3.0 km.
- We design synthetic microseismic events with an interval of 0.2 km for the reservoir and 0.2 km for the faults.
- There are 1737 synthetic events (red) in the reservoir volume and 520 synthetic events (blue) along the faults.
- We invert locations and focal mechanisms of synthetic events, and compute standard deviation errors of locations between synthetic events and inverted events.

Surface network design

- Surface seismic stations within a square area of 5 km x 5 km.
- N x N surface geophones are evenly distributed in the 5 km x 5 km area.
- N is from 2 to 7, corresponding to 4 to 49 surface geophones.
- Standard deviation error of traveltime picks/velocity errors is 25 ms. Assume a normal distribution of the errors.

North-South Distance from Monitorino Menuer

Location SDE (Monitoring storage reservoir)

- 9 surface seismic receivers are needed for microseismic event location in the reservoir.
- Standard deviation error (SDE) is approximately 21 m for 9 surface stations and 16.1 m for 16 stations.

Location SDE (Monitoring faults)

- 16 surface seismic receivers are needed for microseismic event location along the faults.
- Standard deviation error is approximately 17.5 m.

Focal mechanism SDE (Reservoir)

25 surface seismic receivers are needed for focal mechanism inversion of microseismic events in the reservoir.

- Standard deviation errors are approximately 4 deg for double-couple component and 5 % for non-doublecouple component.
- The black solid curve and the dashedred curve are for noise-free and noisy data in each panel

Focal mechanism SDE (Faults)

25 surface seismic receivers are needed for focal mechanism inversion of microseismic events along the faults.

- Standard deviation errors are approximately 7 deg for double-couple component and 9 % for non-doublecouple component.
- The black solid curve and the dashedred curve are for noise-free and noisy data in each panel

Locations of 25 seismic stations

No. X(m) Y(m) Lon(deg) Lat(deg) 1 -2.50 -2.50 -101.038640 36.241077 2 -2.50 -1.25 -101.038640 36.252339 3 - 2.50 0.00 - 101.038640 36.263600 4 -2.50 1.25 -101.038640 36.274861 5 - 2.50 2.50 - 101.038640 36.286123 6 -1.25 -2.50 -101.024674 36.241077 7 -1.25 -1.25 -101.024674 36.252339 8 - 1.25 0.00 - 101.024674 36.263600 9-1.25 1.25 -101.024674 36.274861 10 -1.25 2.50 -101.024674 36.286123 11 0.00 -2.50 -101.010707 36.241077 12 0.00 -1.25 -101.010707 36.252339 13 0.00 0.00 -101.010707 36.263600

No. X(m) Y(m) Lon(deg) Lat(deg)
14 0.00 1.25 -101.010707 36.274861
15 0.00 2.50 -101.010707 36.286123
16 1.25 -2.50 -100.996740 36.241077
17 1.25 -1.25 -100.996740 36.252339
18 1.25 0.00 -100.996740 36.263600
19 1.25 1.25 -100.996740 36.274861
20 1.25 2.50 -100.996740 36.286123
21 2.50 -2.50 -100.982774 36.241077
22 2.50 -1.25 -100.982774 36.252339
23 2.50 0.00 -100.982774 36.263600
24 2.50 1.25 -100.982774 36.274861
25 2.50 2.50 -100.982774 36.286123

Updated with a given geophone distribution

- Standard Deviation Errors (SDE) for the scenario in the figure on the right:
- SDE of event location for the reservoir: 15.5 m
- SDE of event location for the two faults: 17.2 m
- SDE of focal mechanism for the reservoir: 5 degree (DC); 7% (Non-DC)
- SDE of focal mechanism for the two faults: 7 degree (DC); 10% (Non-DC)

Summary

- An NRAP tool for optimal design of microseismic monitoring network is available at NETL EDX for geologic carbon storage and other microseismic monitoring applications: <u>https://edx.netl.doe.gov/user/register</u>.
 - Adaptively define the target monitoring region(s) based on site characterization, CO₂ plume migration, and early detection of induced microseismic events for detailed monitoring
 - Place geophones at different locations during different stages of geologic carbon storage (during CO₂ injection, post injection)
- The example application of the NRAP tool to the Farnsworth CO₂-EOR field shows that
 - 9 surface seismic stations are needed for microseismic event location in the reservoir, and 16 surface seismic stations are need for monitoring microseismic events in the faults.
 - 25 surface seismic receivers are needed for focal mechanism inversion of microseismic events in the reservoir and the faults (this capability is not included in the current release of the tool).

Thank you!

Comments and Questions:

NRAP@NETL.doe.gov

NRAP Website: https://edx.netl.doe.gov/nrap/

Sign up for NETL EDX: <u>https://edx.netl.doe.gov/user/register</u>

